

Deltares

Conceptual model description

TKI Living Lab for Mud

Erik Hendriks Ebi Meshkati Thijs van Kessel

21-12-2021

Table of contents

- Aim of this document
- Description of ripening process
- Phases in the ripening process
 - Settling
 - Consolidation
 - Desiccation

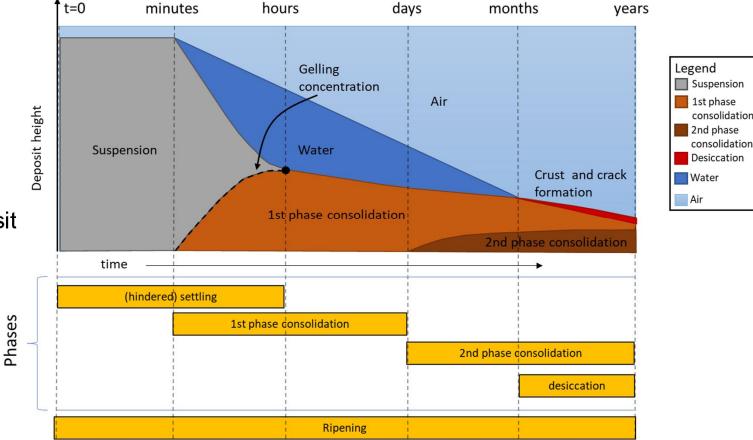
Aim of this document

- This document is part of TKI Living Lab for Mud Phase B: 'Conceptual model'
- In this project, fundamental knowledge development of <u>ripening</u> is coupled to practical application
- The conceptual model serves to compute ballpark estimates and provide key parameters for the ripening process. We will discuss the different phases during this process separately.
- This presentation describes the conceptual model in spreadsheet <u>B_Conceptual_model.xlsx</u>

Description of ripening process (high-level)

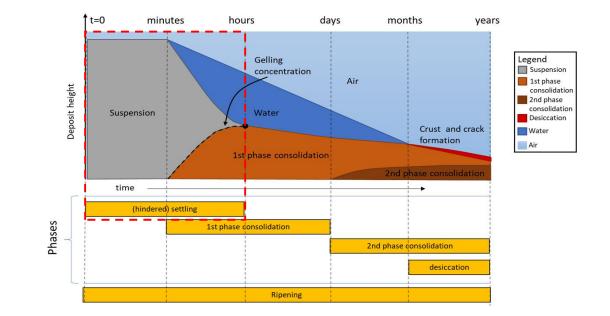
Start point of ripening process

Possible end point of ripening process


Ripening is a soil formation process that irreversibly converts waterlogged sediment into soil (Vermeulen et al. 2003).

Put simply, (physical) ripening is about <u>dewatering of fresh</u> <u>mud</u> to an extent that it becomes a soil with <u>suitable</u> <u>mechanical properties</u> (e.g. consistency and bearing capacity) for a given engineering application.

For a detailed description of the relevant phases and processes, please consult the literature study: A literature study.pdf by Meshkati et al. (2021)


Phases in the ripening process

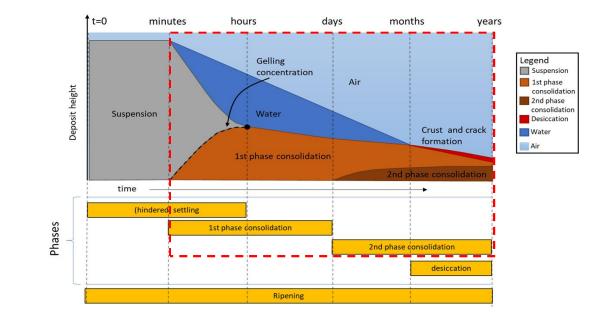
- Ripening consists of three main phases:
- 1. Settling
- 2. Consolidation
- 3. Desiccation
- These phases have in common: a flux of water from inside the deposit to outside of the deposit
- Driving force:
 - Phase 1 and 2: gravity
 - Phase 3: evaporation

1. Settling phase – description

• Ballpark numbers and provide key parameters are discussed separately for each phase

1. Settling phase	
General description	from dilute suspension to concentrated suspension
Detailed description	particles in suspension, zero effective stress
Driving force	gravity
Time scale	hours to a few days

1. Settling phase - Key parameters and ballpark estimates


Key parameter/ constitutive relation	symbol
Initial concentration	<i>C</i> ₀
Initial height	h_0
Settling velocity at low concentration	<i>W</i> _{<i>S</i>,0}
Gelling concentration	C _{gel}

Assuming: linear settling rate For a deposit with given area: *A* [m²]

Ballpark estimate	formula
time scale for settling (t_s)	$t_s = \frac{h_0}{w_{s,0}}$
end height (h_e)	$h_e = h_0 \frac{c_0}{c_{gel}}$
final_concentration (c_{gel})	Material property!
volume decrease by outflowing water (V _{set})	$V_{set} = A(h_0 - h_e)$

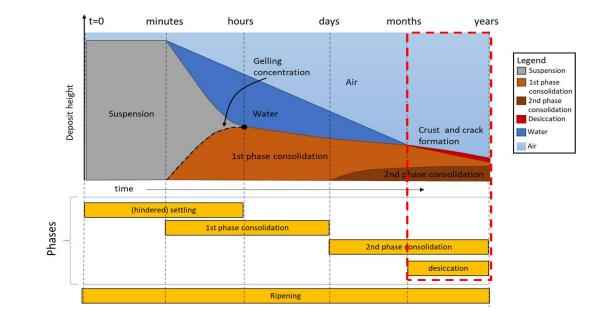
2. Consolidation phase – description

• Ballpark numbers and provide key parameters are discussed separately for each phase

2. Consolidation phase		
General description	concentrated suspension to consolidated bed	
Detailed description	 Consolidation phase consists of two sub-phases: 1. effective stress still negligible, permeability effect dominates (advection, primary consolidation) 2. effective stress becomes dominant (diffusion, secondary consolidation) during 1st consolidation phase, there is some concurrent settling and primary consolidation going on decreasing settling rate, effective stress gradually develops, (positive) excess pore pressure 	
Driving force	gravity	
<u>Time scale</u>	from hours to years, strongly depending on layer thickness and permeability	
Deltares		

2. Consolidation phase - key parameters

Key parameter/ constitutive relation	symbol
initial height	h_e
initial concentration	C _{gel}
height at beginning of 2nd consolidation phase	h_2
density of solids	$ ho_{s}$
density of water	$ ho_w$
permeability-void ratio relation	k-e
effective stress-void ratio relation	<i>k</i> -σ'
fractal theory: fractal dimension	n _f
fractal theory: permeability parameter	K_k
fractal theory: effective stress parameter	$K_{ ho}$

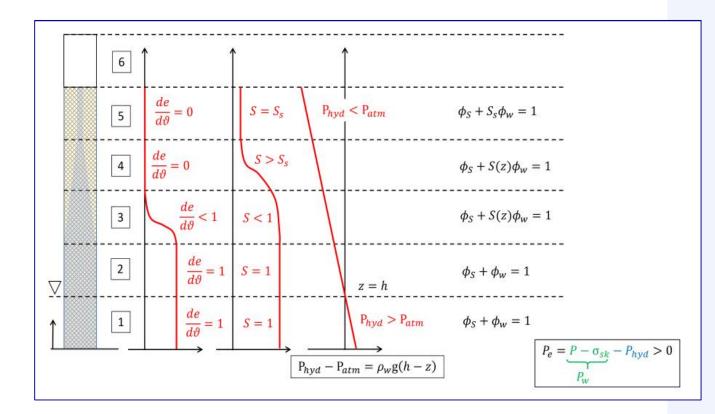

2. Consolidation phase – ballpark estimates

Assuming: negligible advection in first phase, Terzaghi approximation for 2nd phase consolidation, $e = \rho_s I c_{gel} - 1$, accounting for mud fraction only, deposit with given area $A [m^2]$

Ballpark estimate	formula
Fractal scalar parameter (n)	$n = \frac{2}{(3 - n_f)}$
Consolidation coefficient (c_v)	$c_{v} = n \frac{K_{p}K_{k}(1 + e)}{e\rho_{w}g}$
Gibson height (ζ)	$\zeta = h_e \frac{c_{gel}}{\rho_s}$
Final height (h_f)	$h_f = \frac{n}{n-1} \frac{K_p}{g(\rho_s - \rho_w)} \left(\frac{g(\rho_s - \rho_w)}{K_p}\zeta\right)^{\frac{n-1}{n}}$
Final concentration (c_f)	$c_f = c_{gel} \frac{h_e}{h_f}$
Time scale for consolidation (t_c)	$t_c = \frac{2h_2^2}{c_v}$
Volume decrease (V _{cons})	$V_{cons} = (h_e - h_f)A$

3. Desiccation phase – description

• Ballpark numbers and provide key parameters are discussed separately for each phase



11

2. Consolidation phase		
General description	From consolidated bed to dry mud	
Detailed description	Small remaining settling, but strong increase in strength Strong increase in effective stress, negative pore pressure (i.e. suction driven by evaporation) Takes place in upper layers above water table exposed to atmosphere Consolidation continues below water table (i.e. concurrent consolidation and desiccation) Desiccation may strongly slow down if surface exposed to air completely dries out (even the cracks), reworking is then necessary to keep the process going.	
Driving force	evaporation	
<u>Time scale</u>	from months to years, strongly depending on layer thickness and climatology (potential evaporation, rainfall)	

3. Desiccation phase – conceptual sketch

- <u>5 zones can be discerned in deposit, each with</u> <u>different characteristics</u>
- 1. consolidation zone below the water table, compaction by gravity
- 2. fully saturated zone above the water, compaction by suction
- 3. suction larger than air entry value, unsaturated zone (but still with compaction, outflowing water is partially replaced by air)
- 4. soil compaction stops, but saturation may still become lower (outflowing water is completely replaced by air)
- 5. no compaction, saturation constant at minimum level (but some small, residual water flow might still be possible due to pressure (suction) gradients)
- 6. atmosphere (only air, no solids or water)

3. Desiccation - key parameters

Key parameter/ constitutive relation	Symbol/description
Initial height	h_f
Potential evaporation rate	Ε
Minimum void ratio	e_{min}
Residual saturation	S _r
Density of solids	$ ho_{s}$
Water retention (Van Genuchten)	WRC
Shrinkage/swelling	SC
Permeability (saturated and unsaturated hydraulic conductivity)	PC

3. Desiccation phase – ballpark estimates

Assuming: deposit is sufficiently reworked throughout desiccation phase, deposit with given area $A [m^2]$

Ballpark estimate	formula
Time scale for desiccation (t_r)	$t_r = h_f \frac{1 - c_f / \rho_s}{E}$
Final concentration (c_r)	$c_r = \frac{\rho_s}{1 + e_{min}}$
Final height after complete desiccation (h_r)	$h_r = h_f \frac{c_r}{c_f}$
volume decrease (V _{cons})	$V_{cons} = (h_e - h_f)A$
Remaining solids fraction ($\phi_{s,r}$)	$\phi_{s,r} = \frac{1}{1 + e_{min}}$
Remaining pore fraction $(\phi_{p,r})$	$\phi_{p,r} = \frac{e_{min}}{1 + e_{min}}$
Remaining water fraction ($\phi_{w,r}$)	$\phi_{w,r} = S_r \frac{e_{min}}{\mathbf{1 + } e_{min}}$
Remaining air fraction ($\phi_{a,r}$)	$\phi_{a,r} = (1 - S_r) \frac{e_{min}}{1 + e_{min}}$

- Ballpark estimates for the settling, consolition and desiccation phases are presented in the conceptual model
- Required parameters to compute estimates for settling (1), consolidation (2) and desiccation (3):
 - 1. Settling: $c_0, h_0, w_{s,0}, c_{gel}$
 - 2. Consolidation: h_e , c_{gel} , h_2 , ρ_s , ρ_w , n_f , K_k , K_p
 - 3. Desiccation: h_f , E, e_{min} , S_r , ρ_s