

Start of Kustgenese (1985)

KUSTONTWIKKELING VERLEDEN HEDEN TOEKOMST Samenvatting van de bijdragen aan het colloquium

KUSTONTWIKKELING VERLEDEN, HEDEN TOEKOMST

in samenwerking met: Rijkswaterstaat, Dienst Getijde Wateren

WATERLOOPKUNDIG LABORATORIUM

mei 1985

Woord vooraf	dr. ir. H. G. Wind dr. J. Wiersma
1. SNELLIUS III IN DE NOORDZEE?	ir. J. Prins
2. VOETEN OP DE GROND, TENEN IN HET WATER	ir. E. A. Bosman ir. W. Bakker drs. L. Kohsiek
3. FYSISCH-MATHEMATISCHE MODELONTWIKKELING IN DE KUSTMORFOLOGIE	ir. P. Vellinga dr. ir. H. J. de Vriend
4. DE KUST IN VIER DIMENSIES	dr. J. Wiersma
5. EEN GEOLOGISCHE KIJK OP DE KUST	dr. S. Jelgersma
6. EEN GESLOTEN KUST, EEN HISTORISCHE WERKELIJKHEID?	dr. G. Borger
7. WAT WETEN WE NU EIGENLIJK VAN HET GEDRAG VAN DE NEDERLANDSE KUST?	dr. J. H. J. Terwindt
8. DE KUST ALS SYSTEEM	dr. ir. H. G. Wind
9. DYNAMISCH KUSTBEHEER, DE UITDAGING OM VERSTANDIG OM TE GAAN MET HET FUNDAMENT VAN NEDFELAND	ir. J. van Dixhoorn

INHOUD

April 29th, 1987

Who is attending this symposium?

Propositions

- What is the first word that comes to your mind when you think of The Sand Motor?
- 2. How many times have you visited The Sand Motor?
- 3. Which aspects of The Sand Motor do you consider a success?

1. First word that comes to mind Sand <u>Kijkduin</u> BU blocked motor Kite Inn) by Work Protectio car Frames the machin **Megascale desert**

2. How many times have you visited The Sand Motor?

3. Successful aspects of Sand Motor

oast

Introduction NatureCoast & & Sand Motor – The Story

Alexander van Oudenhoven Vera Vikolainen Arjen Luijendijk

NatureCoast Research Program

- Interdisciplinary research project
- Funded by STW Dutch Science Foundation (€5.5 mln)
- Strong involvement of end-users
- Builds on MEP, EFRO and NEMO (3 PhDs)

Science projects

S1. Coastal Safety

S5. Hydrology & Geochemistry

The roles of the postdocs

Integration

-Phd days, field campaigns, writing week

Utilization

-Collaborate with end-users, design workshops, sandy strategies

Dissemination

 End user meetings, media, excursions, this symposium, related programs & projects

Arjen Luijendijk TU Delft & Deltares *Postdoc on Physical feasibility worldwide*

Alexander van Oudenhoven CML, Leiden University *Post-doc on Ecosystem services*

Sand Engine – The Story

The Delfland Coast

2005

Waves:

Mean Hs = 1.3 m Annual storm Hs ~ 4 m

Tidal currents: 0.5 – 0.7 m/ş

Groyne field (68)

Nourishment volume 2001 – 2011: 1 mln m³ / yr; frequency of 4–5 years

photos: Rijkswaterstaat; Joop van Houdt

Services of the Sand Motor

11

In-situ measurements & remote sensing

Evolution and volume changes

Evolution and volume changes

Nature Coast

How will it evolve?

Using a fit function

Using a process-based model

Computed bathymetry after 0.25 years

However, reality is more complex

Understanding its behaviour

Forcing type: Waves Wind Tide

Understanding its behaviour

Understanding its behaviour

Some interdisciplinary findings

- Tidal currents increase the area of sediment sorting around a sandy intervention; this influences habitat areas and fish.
- The elevation, fresh water lens, and governance are important factors for growth of vegetation and dunes on emerged sandy developments.
- Bed composition of the dredged material influences dune formation.
- Explaining behaviour of a BwN pilot demands simultaneous, multidisciplinary measurements.

